3 research outputs found

    Methods and Tools for Battery-free Wireless Networks

    Get PDF
    Embedding small wireless sensors into the environment allows for monitoring physical processes with high spatio-temporal resolutions. Today, these devices are equipped with a battery to supply them with power. Despite technological advances, the high maintenance cost and environmental impact of batteries prevent the widespread adoption of wireless sensors. Battery-free devices that store energy harvested from light, vibrations, and other ambient sources in a capacitor promise to overcome the drawbacks of (rechargeable) batteries, such as bulkiness, wear-out and toxicity. Because of low energy input and low storage capacity, battery-free devices operate intermittently; they are forced to remain inactive for most of the time charging their capacitor before being able to operate for a short time. While it is known how to deal with intermittency on a single device, the coordination and communication among groups of multiple battery-free devices remain largely unexplored. For the first time, the present thesis addresses this problem by proposing new methods and tools to investigate and overcome several fundamental challenges

    Methods and Tools for Battery-free Wireless Networks

    Get PDF
    Embedding small wireless sensors into the environment allows for monitoring physical processes with high spatio-temporal resolutions. Today, these devices are equipped with a battery to supply them with power. Despite technological advances, the high maintenance cost and environmental impact of batteries prevent the widespread adoption of wireless sensors. Battery-free devices that store energy harvested from light, vibrations, and other ambient sources in a capacitor promise to overcome the drawbacks of (rechargeable) batteries, such as bulkiness, wear-out and toxicity. Because of low energy input and low storage capacity, battery-free devices operate intermittently; they are forced to remain inactive for most of the time charging their capacitor before being able to operate for a short time. While it is known how to deal with intermittency on a single device, the coordination and communication among groups of multiple battery-free devices remain largely unexplored. For the first time, the present thesis addresses this problem by proposing new methods and tools to investigate and overcome several fundamental challenges

    Methods and Tools for Battery-free Wireless Networks

    No full text
    Embedding small wireless sensors into the environment allows for monitoring physical processes with high spatio-temporal resolutions. Today, these devices are equipped with a battery to supply them with power. Despite technological advances, the high maintenance cost and environmental impact of batteries prevent the widespread adoption of wireless sensors. Battery-free devices that store energy harvested from light, vibrations, and other ambient sources in a capacitor promise to overcome the drawbacks of (rechargeable) batteries, such as bulkiness, wear-out and toxicity. Because of low energy input and low storage capacity, battery-free devices operate intermittently; they are forced to remain inactive for most of the time charging their capacitor before being able to operate for a short time. While it is known how to deal with intermittency on a single device, the coordination and communication among groups of multiple battery-free devices remain largely unexplored. For the first time, the present thesis addresses this problem by proposing new methods and tools to investigate and overcome several fundamental challenges
    corecore